a^2+(2a)^2=72^2

Simple and best practice solution for a^2+(2a)^2=72^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+(2a)^2=72^2 equation:



a^2+(2a)^2=72^2
We move all terms to the left:
a^2+(2a)^2-(72^2)=0
We add all the numbers together, and all the variables
3a^2-5184=0
a = 3; b = 0; c = -5184;
Δ = b2-4ac
Δ = 02-4·3·(-5184)
Δ = 62208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{62208}=\sqrt{20736*3}=\sqrt{20736}*\sqrt{3}=144\sqrt{3}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144\sqrt{3}}{2*3}=\frac{0-144\sqrt{3}}{6} =-\frac{144\sqrt{3}}{6} =-24\sqrt{3} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144\sqrt{3}}{2*3}=\frac{0+144\sqrt{3}}{6} =\frac{144\sqrt{3}}{6} =24\sqrt{3} $

See similar equations:

| a/4+6=8 | | 3.5-x/2=6.5 | | a+a+2+a+4+a+6+a+8=135 | | 2x+9(5)=39 | | a+a+2+a+4+a+6+a+8+a+10=126 | | 8/15y+6/18=4/12y-6/15 | | 2.75-7.55(5-2x)=26 | | 3m-5=23 | | a+a+2+a+4=78 | | 5x+11-9x=5 | | 3x+2x+10=82 | | a+a+1+a+2+a+3=354 | | a+a+2+a+4=132 | | 3x-6=6×-9 | | a+a+2+a+4=51 | | -(6-8w)=3(7w-1)-13w-3 | | 0=-16t^2+20t-5.95 | | 5x+9x-36=2x+6 | | x+x+1+x+2+x+3+x+4+x+5=387 | | 2x+4x+3=3x | | 2x+8x=10x= | | 10x²-17x-20=0 | | 9x-6x+36=x+4x | | 10x-13=3x+8 | | 2x+48=2x+6x | | x+x+2+x+4+x+6+x+8+x+10=387 | | 4x+x-15=55 | | 1/x+2=-3+6/x+2 | | 4y-22=94 | | 12x-10=-12 | | 310=x+x+2+x+4+x+6+x+8 | | 10x+15x=8.20 |

Equations solver categories